

Recycling of high-quality secondary thermoplastics and recovery of critical raw materials (antimony) from mixed plastic waste in the automotive and the electrical and electronic equipment sector

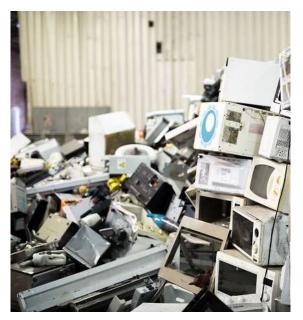
Pierre Fiasse, Comet Traitements 21-05-2024

This project has received funding from the European Union's LIFE Programme for Environment and Resource Efficiency under grant agreement No. LIFE18 ENV/BE/000368.

COMET GROUP / COMET TRAITEMENTS

COMET GROUP:

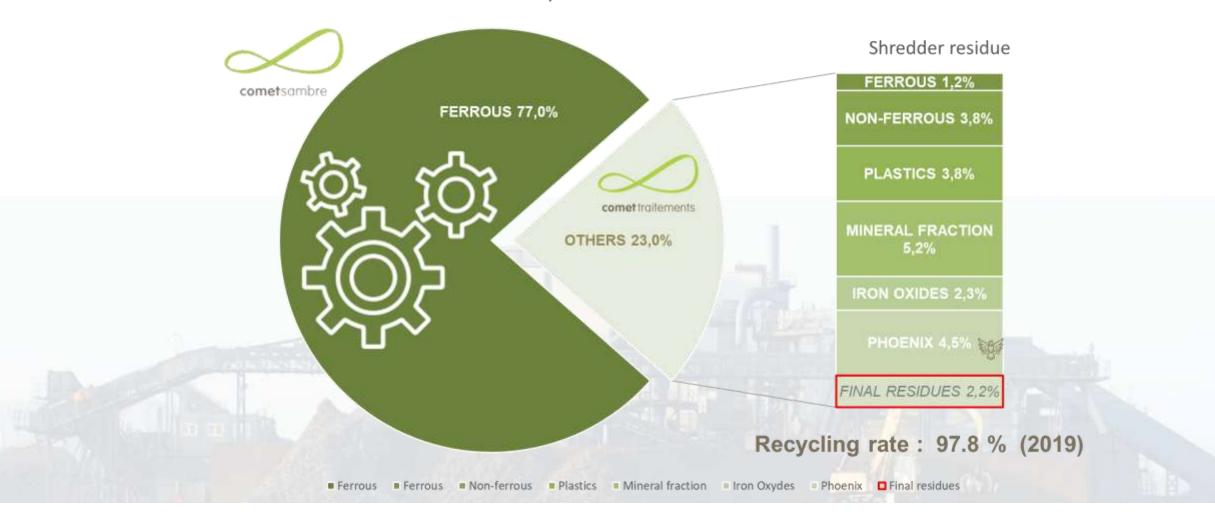
- □ 500 staff, 500 M€ Turnover
- □ Comet Sambre : 2 shredding sites, Charleroi (3.000 CV) and Mons (7.000 CV)
- \square 1.200.000 to/y of Wastes 800.000 to/y metallic



COMET TRAITEMENTS: Shredder Residue processing and recovery

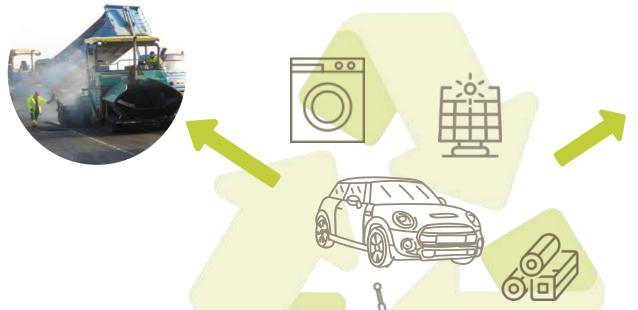
- 8 production units : Post Shredder Technology
- ☐ Treatment capacity: 350 000 T/y,
- □ Staff: 170
- □ R&D team: 15 + 11 external researchers work on Comet projects

FEEDSTOCK



Comet Traitements

Shredder Residues Recovery


SHREDDER RESIDUES VALORISATION URBAN MINING

Glass

→ Technical sand

Plastics Upcycling

Foam, wood... Catalytic cracking

→ Hydrocarbon

Non-ferrous metals

Robotized sorting Hy

Hydrometallurgy

Cu, Al, Zn, CRM: Co, REE, ...

97,8%

LIFE PlasPLUS : CONTEXT

51
millions tons
plastic used each
year in Europe

30

millions tons post consumer waste plastics generated 9

millions tons of waste plastics is collected for recycling.

millions tons are still landfilled or incinirated

LIFE PlasPLUS: objectives

Close the loop:

- High Purity Recycled <u>thermoplastics</u> from complicated ternary plastics mixtures: ABS/PS/FPP
- Recycling **Antimony from** Brominated Flame Retardant Plastics
 - ... two materials in high demand e.g. emerging electric mobility
 - → lower energy consumption and increased fire safety
 - → contribute to EU circularity & Green Deal

Large scale
demonstration
& Integration
of the global
value chain

LIFE PlasPLUS: objectives

Thermoplastics heterogeneous plastic mixes

Residual Fraction - Drainaplus

Downcycling

Separated & Purified Thermoplastics

PP/PE, FPP, ABS, PS

Upcycling

Rubber Flame retardant plastics, technical plastics, wood, ...

Project Overview

Project Location : Obourg, Belgium

Project Budget:

3,170,420 Euro 1,430,450 Euro EC funding

Duration: 01/07/2019 - 30/06/2023

Coordinating Beneficiary:

comet traitements

Associated Beneficiaries:

LIFE PlasPLUS: Partners and Material Value Chain

Plastics Recycling *Automotive Value Chain*

F R Plastics Recycling *Antimony Value Chain*

COMET TRAITEMENTS

Waste sorting and valorization

SERIPLAST

Plastic compounding

STELLANTIS (CRF)

Car

manufacturing

UNIVERSITY OF LIEGE

Research and development

CAMPINE

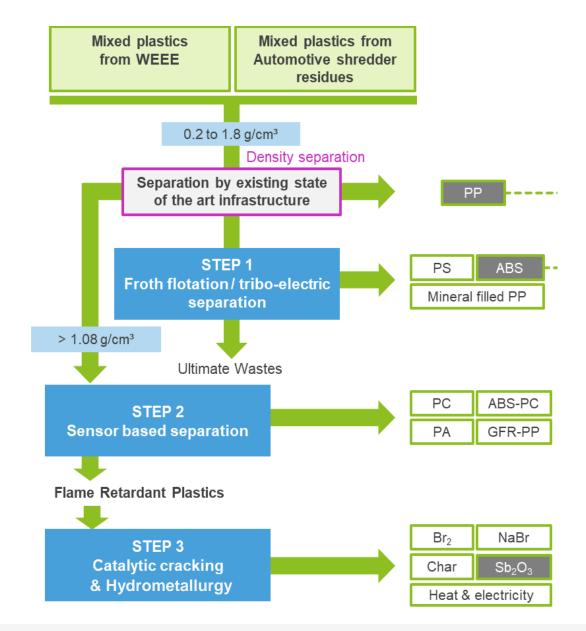
Production of antimony

Detailled objectives

Upcycling 45% of initial Comet's plastic waste: demonstrate industrial & economic feasibilty

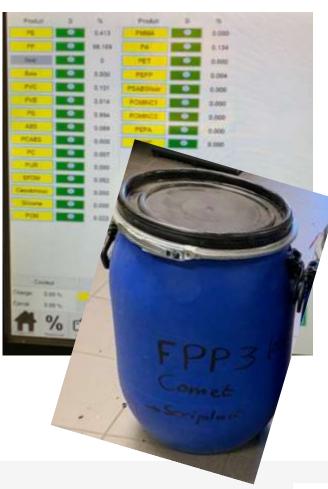
- 2 Substitute > 40% thermoplastics with secondary ones in automotive & EEE markets
- Validate the quality of the produced compounds in vehicle parts & FR masterbaches
- Separate Flame retardant from the rest of the mix thanks to sensor based sorting
 - Showcase a « closed loop » production of plastics with antimony for flame retardancy

LCA


Business plan for each process

Develop replication & transfer plans

Flowsheet



Production of high purity thermoplastics : ABS, PS & FPP

Ternary Plastic Mixture Demonstration Unit: on production to demonstrate on large quantities of ABS, PS and FPP

Treatment capacity: 1 to/h

Target: production of large scale samples

Production of high purity thermoplastics : ABS, PS & FPP

Qualities

Recycled	Quality acceptable for compounding					
Thermoplastics	% F PP	% ABS	% PS			
F PP Comet	> 98 %	< 1-2 %	< 1-2 %			
ABS Comet	< 0,5 %	> 98 %	< 1,5 %			
PS Comet	< 2,5%	< 2,5%	> 95%			

Production of high purity thermoplastics : ABS, PS & FPP

		FPP
Heavy metals	Limit "RoHS 3" (ppm)	ppm
Cd	100	5,52
Pb	1000	27,2
Hg	1000	< 2
Cr (VI)	1000	< 8

Brominated Flame Retardant	Limit "RoHS 3" (ppm)	ppm
Sum of PBBs	1000	<5
Sum PBDEs	1000	27,8

Details of PBDEs:

2000,000,000	
Octabromodiphényl ether	< 5
Nonabromodiphényl ether	< 5
Décabromodiphényl ether	27,8

ABS			
ppm			
23,9			
7,93			
< 2			
<8			

ppm	
< 5	
< 5	

< 5
< 5
< 5

PS			
ppm			
17,4 to 28,8			
32,5 to 62,8			
< 2			
< 8			

6,11
8,67 to 25,4
48,1 to 193

A. Designing new compounds incorporating recycled plastics from ELV

			UNIT	PP 60.33	PP 6	5.40 🖩		
CHARACTERISTICS		OF	Mineral (tais)	Sted my	olynur.	TEST METHOD		
		MEA- SURE	20 to 25% high-flow rate	-25 to	30%			
4	Volume		glon*	1.05.ts 1.10	330	t 177	3td 50430/09 ISO 1183 Method A	
	Coefficient of linear thermal expansion Mold shrekage # Fluidly index &		10 ⁻⁷ HC	50	50 to 70 0.7 to 1.2		SHE 50500	
8			- %	9.7			UNF 4000	
PHYTICAL			g/10 mm	15 to 25	41	15	Std. 50667 (constt. Cl 150 1133 (condt. M)	
	Calcination residual		*	18 to 27	211	n 52	396 50436 150 3451/1	
	400000000000000000000000000000000000000	Elongation	- %	28	- 1		150 527	
	Tensile stress (min.)	Max load		28	- 1	10	(Opermen Type 18, speed = 50 mm/m/n)	
	7	M-30-C	8 8	***		100	150 178 (speed = 2 minimar)	
	Flexural modulus of elasticity (nin.)	at 22.10		2200	2.5	1000		
		#60°C	fütteri ²	1,000	- 10			
		2°00 tk		850	- 1	t0 ·		
MECHANICAL	Pleasand strength (min.) at	# -30 °C				70 35 18		
8		at 23 °C		25				
ă.		W-60 °C		- 16	- 11			
В.		W 88 °C		12		3		
	200 resilience with	24.23 °C	A2M ²	3.5	4	7	150 180A	
	notch (min.)	at 0 °C		- 2	3	3.5		
		at -30 ℃		2	- 2	2.5		
	Falling darf imparit	M 23 °C	1000	15		7.		
	yesistance (min.) ◀	#8°C	Jienn.	15	72	4	Std. 50434	
		M -30 ℃			-			
	Distortion temperature under load (load = 1.8 MPa) (mm.)		-	90		601	100 75	
tt.	Vical softening temperature (5 daN) aren.) Thermal oxidation			04	67	57	31d 50000 1010 300 VST 650	
THEFTMAN					100		Sist. 56432-05 ISO-4577	
	Resistance to combustion			in compliance specifications drawing or reio Standards	ndosta		5w 7-02000	

Stellantis semi-structural interior parts

Selection:

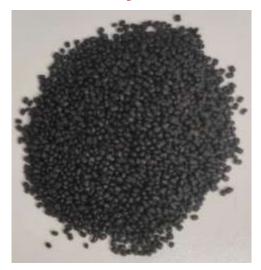
- 2 PP compounds
- 2 ABS/PC GF, ABS GF compounds :

Compounding target for Seriplast

Spec sheet Stellantis/ PP interior part

A. Designing new compounds incorporating recycled plastics from ELV

2 tons of F PP Regrind - 2 tons of ABS Regrind shipped to SeriPLAST



A. Designing new compounds incorporating recycled plastics from ELV

FPP Comet Regrind

Seriplast compound 100% recycled FPP

Compounding optimisation & extrusion by Seriplast

A. Designing new compounds incorporating recycled plastics from ELV

			55246	FPP COMPOUND
Properties	ISO	UM	PP 60.35	FPP 60.35 R
MFI	ISO1133	g/10min	15-25	20
Ash Content	ISO3451	%	18-27	26.4
Density	ISO1183	g/cm ³	1.05-1.10	1.09
IZOD	ISO 180	kJ/m ²	3.5	4.69
Flexural Modulus	ISO 178	MPa	2200	2384,5
Flexural Strenght	ISO 178	Мра	35	35.5
Tensile Strength	ISO 527	%	20	5
(elongation at break)				
Tensile Strength	ISO 527	MPa	23	23
(max load)				
VICAT	ISO 306	°C	64	68.8

Deformazione a trazione (Spostamento) [%]

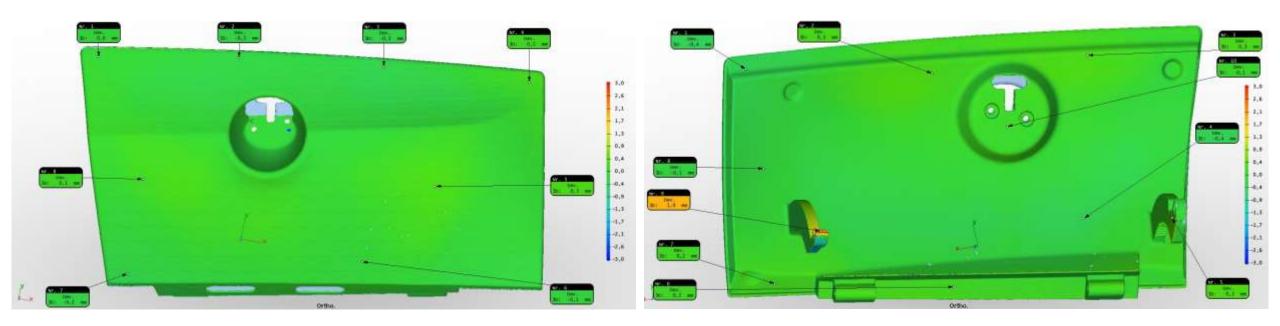
Characterisation

B. Injection of Fiat 500 part with 100% recycled FPP Comet compounds

PP65.40 (100% F PP recycled)

PP 60.35 (PP 50.20R) (100% F PP recycled)

Injection validated



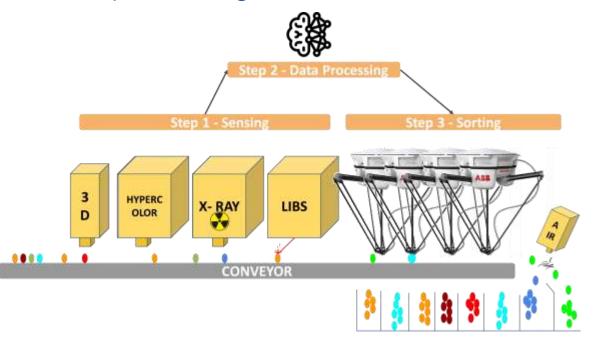
B. Injection of Fiat 500 part with 100% recycled FPP Comet compounds

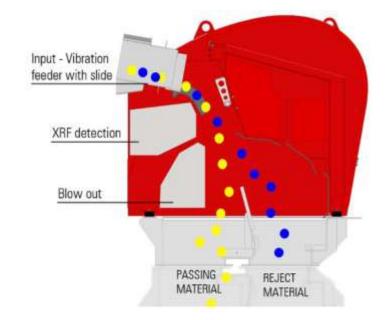
Validation : Deformation after Thermal Cycle

Deformations: -0,2 and 1,9 mm: inside standard limits

C. ABS-PC-Glass Fiber Compound : same approach on speaker adaptor

Speaker adaptor > validated with 75% recycled ABS


Antimony recovery

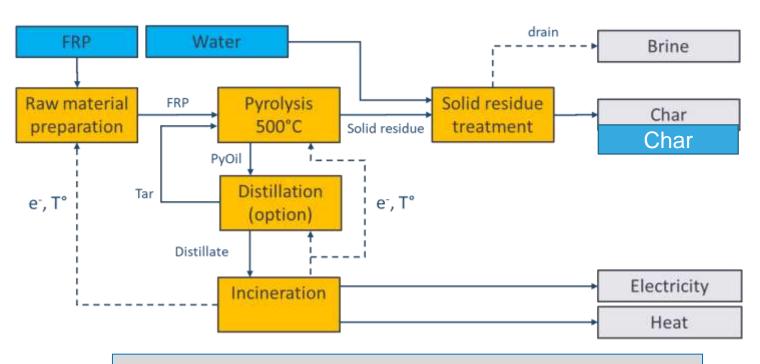

A. Extraction and purification of the Flame Retardant Plastics

2 technologies based on Br detection:

a) PICKIT Pilote (Uliege): Multi sensor & multi-class robotic sorting with a LIBS setup adjusted to FRPP

b) XRF sorting

<u>Successful separation : FR plastics fraction</u> <u>with Br separated = 10% of residual plastics</u>

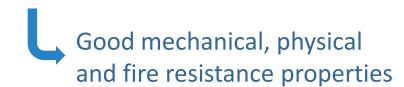

Antimony recovery

B. Pyrolysis of the Brominated Flame Retardant Plastics

PYROLYSIS Pilot Campaign

- ≥ 92% Sb from FRP goes to quenched char
- 5% to 6% Sb in the quenched char

Antimony recovery C. CHAR to Antimony

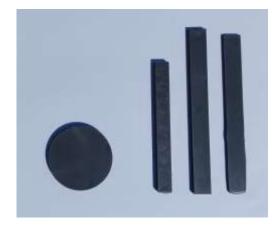

Sb-Char treatment

Université de Liège :

oxidative hydrometallurgical route to produce the Antimony Trioxide (ATO) for Campine.

Campine

Exploring alternative pyro route
Produce Flame Retardant Masterbatch



FR masterbatch : rABS + rATO

Recycled ATO

masterbatch injection molded

Impact - Industrial

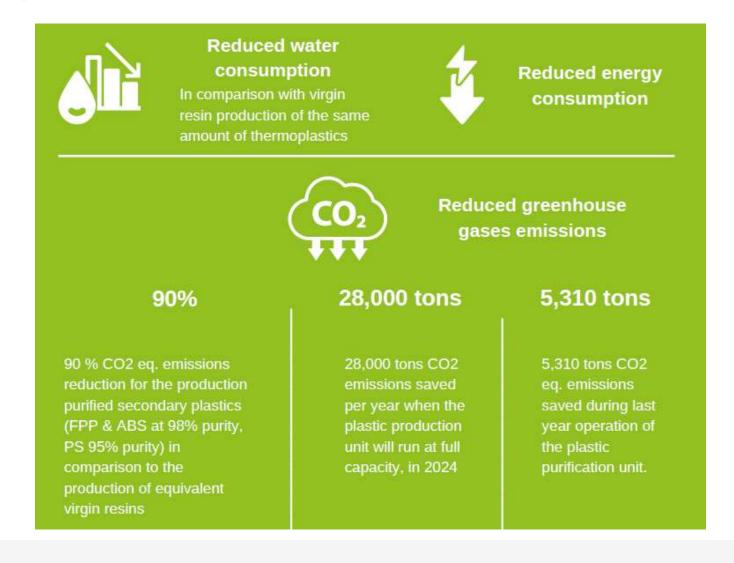
Plastic purification unit in operation after 1 year project completion

- 8,687 tons of purified ABS, FPP and PS sold during project
- capacity of 50,000 tons/y waste expected (2024)
- 16,000 t/y purified thermoplastics diverted from landfilling & re-entering automotive & EEE market

Impact - Industrial

Upcyling has been demonstrated with high impact on European circular value chains

- car interior part with
 - 100% FPP
 - 75% ABS recycled content showcased
- opens the door to circular, closed loop recycling in the automotive and EEE sector


Replication potential is high for the thermoplastic purification unit

Payback time 4 – 7 years

Impact – environmental

After LIFE Plan

Activities

- 1. Dissemination and awareness campaigns
- 2. Ramp up & upscale the thermoplastic purification plant
- 3. Replication at other European sites
- 4. Participating actively in the development of the new value chain & business model with key value chain actors
- 5. Replicate compounds formulations on other end user applications
- 6. Improve recovered antimony purity and its production trough optimization of the process & develop the market.
- 7. Further Research & development.

After LIFE Plan

- Contacts ongoing with Stellantis, suppliers & other automotive companies
- Policy context 2023:
 - New End of LIVE Vehicle directive : 25% plastic recycled content
 - CRM Act
- But ... virgin plastic price dropped dramatically end of 2023

Lessons learned

Concluding remarks

LIFE standard actions projects – opportunity?

- Work with industrial value chain actors access to market exploitation
- Transfert of techno from research actors
- Bottom up calls : you choose your idea
- Industrialy led / close to the market
- Small project small consortium possible (3-5 partners, 3 years, 3 M€)
 - → easier to manage
- Companies / beginners are welcome Project Officer aware!
- Support agency (Elmen): ++

LIFE standard actions projects – attention points

- Focus on problems of international level
- Objectives > quantitatives = written in the grant
 - Small deviations allowed
 - But be cautious in setting up objectives
- Don't underestimate
 - Management technical & financial
 - Administrative work : reports
 - Non technological tasks: dissemination & exploitation activities

Dissemination & exploitation activities

https://www.lifeplasplus.eu/

- Mid term Conference
- Final Conference

Dissemination & exploitation activities

- Market analysis
- Business plans
- IPR workshop exploitation plan
- Socio-economic assessment

LIFE standard actions projects – attention points

- Focus on problems of international level
- Objectives > quantitatives = written in the grant
 - Small deviations allowed
 - But be cautious in setting up objectives
- Don't underestimate
 - Management technical & financial
 - Administrative work : reports
 - Non technological tasks: dissemination & exploitation activities
 - → Allocate sufficient time & budget

LIFE standard actions projects – attention points

- Be aware of participation rules
 - Specific to LIFE
 - Eligible costs time sheets hourly rate >> seek for support (ELMEN, NCP)
 - Multiple offer for all costs: consumables, subcontracting!
- Management : financial & administrative
 - Seek expertise : in-house, partners, external support
 - Better as partner
 - Subcontracting possible but expensive
- Dissemination activities :
 - Ideally an experienced RTO partner or a consulting company as partner

